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AIIICrad-ln this paper. we examine the effect of a slight material imperfection on the deformation field in
an otherwise homogeneous body subjected to a plane bi-axial stretch at infinity. Both hyper-elastic and
hypo-elastic materials are considered. with the constitutive equations assumed to be such that the governing
equilibrium equations lose ellipticity at some strain level. Astraightforward regular perturbation analysis is
performed and attention is focussed on the features of the first order lerms. It is found that the effect of the
imperfection is negligible at small values of the applied load. As the load increases. the imperfection more
or less abruptly gets "activated" and causes a rapid concentration of strain within certain narrow
bands-shear bands-passing through the imperfection. In order to estimate the accuracy of the linearized
analysis. a fillite element solution of the nonlinear problem is also carried out and results are compared.

INTRODUCTION
A common observation in certain highly deformed ductile solids is that a smoothly varying
deformation field more or less abruptly gives way to one which involves narrow bands of highly
localized shear deformation (shear bands). Often, the formation of shear bands leads to fracture
along these Jines of intense shearing so that localization may then be viewed as being a
precursor to rupture. The formation of Loders bands in metals[l] is a well-known example of
this phenomenon.

Recently, considerable effort has been directed towards the theoretical understanding and
modelling of this phenomenon. Analytical studies have been carried out by HilJ[2], Thomas[3]
and more recently by Rudnicki and Rice(4], Rice[S] for inelastic materials and by Knowles and
Sternberg[6] for nonlinearly elastic ones. In all of these works, the pre-localization field is
homogeneous and it is found that a bifurcation mode involving a localized shear band is first
possible when the system of governing differential equations loses ellipticity. Because of the
uniformity of the deformation field prior to localization, shear bands appear suddenly and the
analysis leaves undetermined their exact location in the body.

Experimental observations suggest that "imperfections"-inherent non-uniformities in the
material properties-play an important role in the initiation and growth of localized shear
zones. In the case of polycrystalline aggregates, shear bands often start appearing at regions of
imperfection in the material, such as voids, second phase particles or other inclusions, and then
propagate into the rest of the body, usually along grain boundaries [7]. So far only some very
elementary steps have been taken in order to account for the role of imperfections.

Recently however, Tvergaard et al.[8] completed a very interesting numerical study of the
plane strain tension test. There it is shown how a small geometric imperfection in the form of a
thickness variation in the specimen can be the "triggering mechanism" which instigates the
appearance of shear bands.

In this paper, we attempt to provide an analytical explanation, at least of the qualitative
features, of the emergence of shear bands in a ductile metal which is SUbjected to large plastic
deformations under conditions of plane strain. In particular, we examine the role played by a
material imperfection in the initiation of shear bands. More specifically, we consider an infinite,
isotropic, incompressible body whose material properties are homogeneous outside a certain
bounded region of the body; the properties inside this region are slightly different to those
outside. At infinity, we suppose that the deformation state is one of uniform bi-axial stretch.
Our interest lies in examining the features of the deformation field and how they vary with the
applied stretch at infinity.

Classical smooth yield surface models of plasticity theory have been found to predict
unrealistically high strain-levels for the onset of shear bands. Furthermore, investigations on
the stability of plastic flow against shear localization indicates that the critical conditions are
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very sensitive to deviations from such a model. In particular. the presence of yield surface
vertex effects (which are predicted by polycrystalline models [9-1 I» brings down the theoretic­
ally predicted critical values of strain to more realistic levels. A simple way of taking into
account the destabilizing effect of a corner on the yield surface is to use a deformation theory
of plasticity. The J2 deformation theory is the most frequently used for bifurcation calculations
at small strain levels. In the case of large strains. there is no unique generalization of this
theory. Here. two different generalizations of it will be considered. the finite strain version
proposed by Storen and Rice[12] which is in fact a hypo-elastic model (with no associated
strain energy density function) and the hyper-elastic model, both having the same uniaxial
stress-strain curve.

In the theoretical analysis (and the subsequent numerical calculations), we will assume that
the magnitude of the imperfection is sufficiently small so as to ensure that the solution to our
problem is always in the total loading regime. Since no unloading occurs in a "perfect"
(imperfection-free) body, at least until the loss of ellipticity, such a choice of imperfection
amplitude can always be made.

It should be mentioned that in view of the prescribed displacement boundary conditions.
geometric instabilities do not occur in the problem under consideration here. Consequently, for
the perfect body, there is a unique deformation field associated with any prescribed value of the
stretch at infinity, provided that the relevant equations remain elliptic. This is in contrast to the
problem studied by Tvergaard et al. [8], in which localization is preceded by diffuse necking of
the specimen in the elliptic regime.

Making use of the small difference in material properties inside and outside the imper­
fection, we carry out a regular perturbation analysis of the problem. We focus our attention on
the first order terms only and find that they display most of the experimentally observed
features discussed previously. In particular, it is seen that the effect of the imperfection on the
deformation field is negligibly small until the applied stretch at infinity approaches a certain
critical value AI'" As the applied stretch approaches this value, we observe that the strains
rapidly concentrate along two directions emanating from the imperfection. The "speed" with
which these localized zones propagate through the body increases dramatically as the critical
applied stretch is approached. This critical value of the applied stretch Acr is in fact the value of
the prescribed stretch at which a bi-axially stretched perfect body loses ellipticity. The
directions of localization are the associated characteristic directions.

Experiments conducted by Anand and Spitzig[13] on aged maraging steel indeed show that
internal shear bands start forming when the plastic strain reaches a certain critical level.
Increasing the strains beyond this value causes these zones to rapidly propagate through the
body (and multiply) until fracture.

Despite the good qualitative agreement between the predictions of our model and obser­
vations, we find that the regular perturbation analysis is not uniformly valid with respect to the
applied stretch at infinity. Consequently, one would not expect the quantitative results,
especially when the applied stretch is close to Am to be reliable. In order to estimate the range
of validity of the linearized analysis, a finite element solution of the nonlinear problem posed
here was undertaken. Surprisingly, we find that the numerical results compare remarkably well
with the perturbation solution, even at values of the applied stretch very close to the critical
one.

I. PROBLEM FORMULATION
We consider an isotropic, incompressible body undergoing deformation under conditions of

plane strain. Our rectangular cartesian reference frame will be oriented such that the cross­
section of the body occupies the entire (z .. z2)-plane and all field quantities are independent of
the z)-coordinate.

The body is subjected to a biaxial stretch at infinity parallel to the z.- and Z2-axes and the
resulting deformation is described by

Y.. = y.. (z) = z.. + u..(z),

t Greek subscripts take the values I. 2 and repeated subscripts are summed over this range.

(l.1)t
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where y is the current position vector of a. material point which was located at % in the
reference configuration and" is its displacement vector.

A Lagrangian formulation of the field equations is adopted and cartesian coordinates are
used in the subsequent analysis. Here, this formulation is briefly outlined. For more details the
interested reader is referred to Green and Zerna[14] and Budiansky{1S].

The following kinematical quantities are needed: the deformation gradient tensor F whose
components are given by

(1.2)t

the right Cauchy-Green tensor C with components

(103)

and the Lagrangian strain tensor E with components

(1.4) .

Incompressibility implies that

(1.5)

The two fundamental invariants of Care

(1.6)

where ,\ I, '\2 are the stretch ratios.
In view of (1.5) we have

(1.7)

If I is the (symmetric) second Piola-Kirchoff stress tensor; accompanying the deformation at
hand, the equilibrium equations in the reference configuration are

(1.8)

For the complete formulation of the problem, the constitutive equations are needed. The
two constitutive laws to be employed are, as discussed in the introduction, a nonlinear elastic
relation and the Storen and Rice [12] model.

1.1 Hyper-elastic material
Here, the unloaded configuration will be used as the reference one. Letting X denote the

position vector of a material point in the unloaded configuration, we take %=X. Consequently,
in view of the applied bi-axial stretch at infinity we, have

(1.9)

where Ao is the applied stretch at infinity (in the XI-direction).
Suppose that the body is elastic and that it possesses a potential W representing the strain

energy density per unit undeformed volume. Since our attention is restricted exclusively to
plane, volume-preserving deformations, W may be taken to be afunction of the invariant I (see
1.6) and X only, W = W(1, X). The in-plane components of the second Piola-Kirchoff stress

t A vertical stroke followed by a subscript denotes dilferentiation with respect to the correspondilll z-eoordinate.
me second Piola-Kirchoff stress tensor I is related to the Cauchy (true) stress" by " .. (del ,.,-I1IFT

•
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are now given by
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Sa/3 = 2W'(l, X)l)a/3 - pC~J, (1.10)

where W'(l, X) =aW(l, X)/ilI, p(X) is a scalar (pressure) field arising because of the in­
compressibility constraint and c- I is the inverse of the right Cauchy-Green tensor C defined by
(1.3). We find from (103), (1.5), (1.8) and (1.10) that

(1.11)

Equation (1.11) together with the incompressibility condition (1.5) constitute the governing
system of equations. They are three scalar equations involving the three functions Ya(X), p(X).

In this paper we consider a class of elastic materials whose strain energy density function W
conforms to the following requirements:

(i) W = W(l, X) = Wo(l)+ ~W(l, X), (~# 0), (1.12a)

where W(l,') =0 in R2
- D, W(l,') # 0 in D.

(ii) Wo(l»O for I~2. (I.12b)

(iii) There exists a number krr (> 0) such that

:k {2kWo(2 +k2
)} > 0 for 0~ k < krn

= 0 for k =krr• (I.I2c)

(1.13)t

In eqn (I.I2a) ~ is a constant and W(l,') is a sufficiently smooth function whose support is
the bounded region D. Accordingly, (1.12a) describes an elastic body which is homogeneous
everywhere in R2

- D (see Fig. 1). We will refer to D as the "region of imperfection" or simply
the "imperfection". When ~ = 0, the body is called "perfect". The condition (1.12b) is
motivated on physical grounds: it ensures that the secant modulus of the perfect material in
simple shear is always positive. The final condition (1.12c) is a statement concerning the
character ofthe system of partial differential equations (1.5), (l.11). It has been shown in[I6] that
this system is elliptic at a solution Ya(X), p(X) and at a point X if and only if

:k {2kW'(2 +k2
, X)} > 0, k = (l - 2)1/2.

I I I t IST~dcHIRAho\:l t t t

IMPERFECTION

~----X,

STRETCH
RATLO>'o

j j j j j j j j j j j j j j j

Fig. I.

t The results in (16) are established for a homogeneous material but may be readily generalized. Aphysical interpretation of
this condition is also given there.
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Equation (1. 12c) indicates that for sufficiently small strains (i.e. small values of 1-2) the perfect
material is elliptic and that ellipticity is lost at some critical strain level.

We may now pose the following problem: given an elastic body whose strain energy density
W conforms to 0.12), we wish to determine a solution yo(X), p(X) to (1.2), (1.5)' and (1.11)
subject to the conditions (1.9) at infinity, when the applied stretCh Ao is prescribed.

In the particular case of a perfect (imperfection-free) body, the unique solution to this
problem is Y. =AoX.. Y2 = ,\ii'X2, P =constant, for all Ao satisfying the ellipticity condition
Ao < Acr where A~r +A~; - 2 = k~r.

We will illustrate the various features of the perturbation solution obtained in the next
section by considering a specific strain-energy density function. For this purpose we consider a
material whose uniaxial stress-strain response is described by

U E- =- for E S Ey,
Uy Ey

(U)m E- =- for E ;::: Ey,
Uy Ey

(1.14)

where U is the applied (true) stress and E is the natural strain (E =In A). The Young's modulus is
E =U,JEy and the constant m is the hardening exponent. Such a piecewise power law
description of material response is commonly used in plasticity theory, wherein Ey and Uy

represent the yield strain and stress in uniaxial tension or compression.
A three dimensional elastic potential W(A.. A2, A3) compatible with (1.14) is

(1.1Sa)

where the equivalent strain Et is given in terms of the principal logarithmic strains Ej by

Ej = In Aj •

In order to model the imperfection, we take

E = Eo+E(€, X), Uy = u~, Ey = u~/E,

(l.lSb)

(1.1Sc)

(1.1Sd)

where E(f, .) is a function with support D, E(O, X) =0 and u~ is a constant. It can be verified that
this material conforms to the ellipticity condition (1.l2c).

1.2 Hypo-elastic material
The Storen and Rice version of the J2 deformation theory is a hypo-elastic constitutive law,

which is in general, history dependent. Consequently, the rate form of the field equations must
be used. Throughout this paper we define the rate of a field quantity, denoted by ('), to be its
derivative with respect to some monotonically increasing parameter with the reference position
% held fixed. Here we choose '\0' the applied stretch at infinity in the XI direction, as such a
history parameter.

Differentiation of (1.8) with respect to the history parameter, leads til the rate form of the
equilibrium equations

(1.16)
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Similarly, from the incompressibility condition (1j) we find

(1.17)

The constitutive equation for an incompressible hypo-elastic material, under plane strain
conditions, takes the form

(1.18)

(e.g. see[17]) where C is the right Cauchy-Green deformation tensor while t is the rate of the
Lagrangian strain E and has components

(1.19)

For the Storen and Rice material[l2] the components of the incremental moduli tensor L are
given by

where

L 2£ [1C- IC- 1 C-IC-I) 3(1 B,)~]
all.,. =3 ' 2' al' IJ3 + ..II Ill' -2 - £, --ur-

I [C-I C-I +C- 1 C- I ]- 2 "l'SIJ3 + Ill'SaII ..IISIIl' + IJ3S"l"

(1.20)

(1.21)

Here £, and £, are the tangent and secant moduli respectively of the uniaxial true stress­
natural strain curve at a stress level equal to the equivalent stress 0',.

Without loss of generality the imperfection in this case is considered to be of the form:

q(z) =qo +~q(z) (1.22)

where q stands for any material property. In analogy with (1.12a), q is a function of bounded
support D. It is understood that £, and £, have an explicit dependence on q. When the uniaxial
stress-strain curve is taken to be the same piecewise power law 0.14) that we assumed for the
hyper-elastic material, we find the following expressions for £, and £,:

£, = £ for 0', sO'" £, = £ (::)1-", for 0', > 0'"

£( )1-'"£, =£ for 0', sO'" £, =_ 0',
m 0',

for 0', > 0'"

(1.23)

The governing (nonlinear) problem for the imperfect Storen and Rice hypo-elastic body is
then completely posed if one supplements equations (1.16)-(1.22) with the requirement that the
asymptotic behavior at infinity of the displacement field II is to be given by (l.9).

Here also, it can be easily verified that in the case of a perfect body, i.e. E=0, the solution
to the above problem describes a state of homogeneous strain (and stress). In this case the
principal axes of strain at any material point remain fixed with respect to the material (as the
history parameter varies) and therefore, as discussed by Storen and Rice[l2] their constitutive
model is path independent. Consequently, the final state of stress here is identical to that of the
perfect elastic body (for the same value of Ao).
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2. REGULAR PERTURBATION PROBLEM FORMULATION
2. J Hyper-elastic material

As discussed in the previous section, the deformation of the perfect body, ~ = 0, is a purely
homogeneous one, with the current position of a material point x being related to its reference
position X by

(2.1)

When the magnitude of the imperfection is small, I~I ~ " it is reasonable to expect that the
current position 'l will not be significantly different from the position x.

In this paper we restrict our attention to the case of a small imperfection amplitude and perform
a regular perturbation analysis of the problem using l as the "small parameter."

Accordingly, we assume that the current position 'l(X,~) and the pressure p(X, l) admit the
following asymptotic representations:

I - -
'12 =.\0 X2+~a2(X)+ oW,

p = po+fJ;(X) +o(i>,

(2.2)

as l-+o. Throughout this paper, quantities associated with the uniform field (the zeroth order
terms) will have a superscript or subscript (0) while the first order perturbation terms will be
surmounted by a (-). Corresponding expansions for the various field quantities introduced in
the previous section may now be deduced.

On making use of (2.2), the incompressibility condition (1.5) yields Ao1aadax1+Ao
aa2/aX2 =0 to leading order. At this point, it is convenient to change independent variables
from (XI> X2) to (XI> X2) where x is defined by (2. J). For notational convenience we will use the
same symbols to denote a function of x and the corresponding function of X. A comma
followed by a subscript will indicate differentiation with respect to the corresponding x­
coordinate. The incompressibility condition now takes the form ao•o = 0 from which it follows
that Ii(x) admits the representation

(2.3)

where the displacement potential "'(x) is any sufficiently smooth scalar-valued function.
The displacement equations of equilibrium (J.I J) may be similarly evaluated to leading order

on making use of (1.12a) and (2.2). The pressure term p may be eliminated from the resulting
two equations which, after making use of (2.3), leads to

where we have set

,.,. = (.\3+ A02)Wo(I~, (J' = 2(.\3- A02)Wo(I~,

,.,.*=(.\3+ .\o2)WO<I~+ (.\3- .\02)2W:;(I~,

8 = 2(.\02
- .\3) W:.iJO, or).

In view of (1.9), (2.2) and (2.3) we will require that at infinity

(2.4)

(2.5)

(2.6)

The I.h.s. of (2.4) is identical to eqn (3.3) obtained by Hill and Hutchinson[18). This coincidence
is hardly surprising, since they both describe incremental equilibrium from the same uniform
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reference state of plane strain of an incompressible, isotropic body. Following Hill and
Hutchinson [18J, the constants IJ. and IJ.* may be interpreted as being the shearing moduli (of the
perfect body) associated with an infinitesimal simple shear superposed on a pure homogeneous
deformation; IJ. for shearing paTillel to the principal axes and IJ.. for shearing at 45° to them.
Moreover, a- is the difference between the principal (in-plane) Cauchy stresses.

The differential equation (2.4) is said to be elliptic, parabolic. or hyperbolic according to
whether there are exactly no, two, or four real values of n"n~ which satisfy its characteristic
equation

In view of (I. I2b) and (2.5) it follows that the coefficients of eqn (2.4) obey

a- a-
IJ. +'2 > O. IJ. - '2 > 0,

Consequently, (2.4) can be shown to be eJIiptic (everywhere in R2
) if and only if

21J.*- IJ. +~IJ.2- ~2 > O.

(2.7)

(2.8)

(2.9a)

From (2.8) it also follows that (2.4) can never be parabolic (see Hill and Hutchinson[18]).
Substituting for IJ., IJ.* and a- from (2.5) and making use of (J.J2b), shows that (2.9a) is

equivalent to

(2.9b)

It therefore follows from (2.9b) and (1.13) that at a given value of the applied stretch Ao. the linear
differential equation governing the displacement potential'" (for the imperfect body) is elliptic
if and only if the nonlinear equations (l.5). (1.1 I) governing the equilibrium of the perfect body
(at the same value of Ao) are also elliptic.

For the class of materials defined through (1.12) considered here. there exists a critical value
of the applied stretch, Am such that (2.4) is elliptic when I < Ao < A., and hyperbolic when
Ao =Arro When AO =Arr there are twot families of characteristics, XI tan Orr::!: X2 =constant,
associated with this equation and the characteristic angle (in the current configuration) Orr

obeys

(2.10)

In the particular case of the power law material (1.15), we find from (2.9) that the value of Arr is
given by the unique (> 1) root of

(2.1 1)

In this paper we will restrict our attention to values of Ao which are strictly less than A.,.
Consequently, the linear differential equation. (2.4), and also the nonlinear equations associated
with the perfect body, remain eJJiptic throughout our discussions. On the other hand, one would
anticipate that the nonlinear equations governing the equilibrium of the imperfect body will lose
eJJipticity, locally in the vicinity of the imperfection, at a value of Ao somewhat smaller than Arro

tThe four real values of ndn2 satisfying (2.7) in this case appear in two distinct pairs.
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2.2 Hypo-elastic material
For simplicity. in this case we choose as reference configuration the configuration assumed

by the perfect body when it is subjected to stretches identical to those applied at infinity to the
imperfect body.t Accordingly, here we take %=x where the spatial variables XI. X~ were
introduced in (2.1). It is understood that all field quantities are functions of x" x~ and the history
parameter AO'

Again. we assume that the magnitude of the imperfection is small, I~I ~ I. and take the
displacements and stresses to be of the form

(2.12)

as ~ .... O. The zeroth order terms describe the perfect body and, as remarked at the end of
Section 1.2, are identical to the corresponding terms for the hyper-elastic material. In particular.
we have

Ii? =AoIX" Ii~ =- AOIX~.

s?~ = S~I =O. s11 - s~~ =u. (2.13)

On making use of (2.12), the (rate form of the) incompressibility condition (1.17) may be
evaluated and gives (;iIl-li~.llaa).1l = 0 to leading order. Consequently there exists a function '"
such that

(2.14)

Similarly. the incremental equilibrium equations (1.16) and the constitutive relation (1.18) may
also be evaluated to leading order. Combining the resulting equations. eliminating the pressure
term and utilizing (2.14) leads to

(2.15)

where the r.h.s. is given by

and we have set

__ {[2LO " oLn/l'~I LO " 0 " " ]. 0 -g - "1l~O., + " + Yll,~a". +SIlYO,,~o., U ,,~u'.YIlH
aU••y II

[ OL"/lFI +" " " ]'0 - +oLalJul - .o}+ os., II a.yOIl'O,,~ Ua.yS.,.-, oq 0q.",u ,..a Ea,

(2.16)

(2.17)

As in the previous sub-section IL and IL· are the incremental shear moduli of the material.
The I.h.s. of (2.15) is, as expected, identical to the left hand side of (2.4) since it also

represents the incremental equilibrium equation around a uniform state of plane strain of an
incompressible, initially isotropic material. In contrast to (2.4) however. the r.h.s. of (2.15)
involves the unknown quantities i and i.

As discussed by Hill and Hutchinson[18], for a general hypo-elastic material all three states
(elliptic, parabolic and hyperbolic) are possible. For the particular power-law material described
previously (1.14), the study of the roots of the characteristic equation (2.7) gives the following

tThe resulting formulation is commonly referred to as being an updated Lagrangian one.
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results: Equation (2.15) is

R. AOEYARATNE and N. TRIANTAFYLLIDIS

elliptic when
parabolic when

elliptic when
hyperbolic when
parabolic when

1S; Ao< exp(O.5), } for m < 2
AO ~ exp(0.5),

I :s; Ao < exp(vm=1/m), I
expym - 11m) s; >.0 <exp(O.5), for m ~ 2.
exp(0.5) < Ao.

(2.18)

The characteristic directions at the instant of loss of ellipticity are X2:!: (tan 9er )XI = constant
where the angle 9rr is given by

1
0 for m s;2,

9rr = tan- J [ m - 2 JI/2 for m > 2.
m +2Vm -1 (2.19)

Here again, the analysis is restricted to the case Ao< Aer where Aer. is the critical value of the
applied stretch at which the perfect material first loses ellipticity:

I
exp(0.5) for m:s; 2.

Aer = (vm=t)exp m for m > 2. (2.20)

3. REGULAR PERTURBATION PROBl EM. SOLUTION
A formal solution to the linear partial differential equation (2.4) or (2.15) may be obtained as

follows. Letting g(Xh X2) denote the r.h.s. of either of these equations, we seek a solution in the
(convolution) form

(3.l)t

The function G then satisfies

(3.2)

where B{') denotes Dirac's delta distribution, and G is to be suitably restricted at infinity.
A solution to (3.2) may be obtained through a generalized Fourier transform (see

Lighthill [15]) or by appropriating the results in Gel'fand and Shilov[20] Section 6.1:

In view of the ellipticity of eqns (2.4) and (2.15), the denominator of (3.3) does not vanish. The
function G is in fact an ordinary function and has continuous first derivatives on R2•

The integral appearing in (3.3) may be evaluated by contour integration and leads to the
following results: If the roots of the polynomial

(3.4)

tOne can define physically meaningful fUIICtion spaces V and V' such that for every g in V'there exists a unique solution
'" in V. In particular. the function g associated wilh the specific imperfeclion (117). (118) used subsequently. and the
corresponding "solution" '" thaI we find, do belong 10 V' and V. The authors arc indebled 10 Prof. C. Dafermos for Ihh
observalion.
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consist of two complex conjugate pairs, then

1123

Here, the positive numbers a and f3 are given by

a - [!{{f +(u/2») 112 _ 2f*- fL }] 1/2
- 2 \p, - (uI2) fL - (uI2) ,

= [!{(fL+(uI2»)112 +2fL*-fL}]I12,
f3 2 fL - (u/2) fL - (u/2)

(3.6)t

so &hat a + if3, a - if3, - a + if3, - a - if3 are the roots of the polynomial (3.4). In view of (2.8), (2.9a)
any hyper-elastic material falls into this category, as do also certain hypo-elastic materials (in
particular the power-law materials considered here with hardening exponent m> 2).

In the case where (3.4) has two pairs of purely imaginary conjugate roots (which is the case
for a power law hypo-elastic material with 1s ms 2) one finds

(3.7)

where the positive numbers a and f3 are now found to be

a = [2P.. -,l _ {(2fL· - fJ: )2 _ fJ: +(u/2)} 112] 112
fL - (u/2) fL - (uI2) fL - (cr/2) ,

=[2fJ:. - fJ: +{(2 fL • - fJ: )2 _fJ: +(u/2)} 112] 1/2
f3 fL - (u/2) fL - (u/2) fL - (u/2) , (3.8)

and ± ia, ± if3 are the roots of the polynomial (3.4).
In the remainder of this section we discuss some qualitative features of these formulae.

3.1 Hyper-elastic material
We note that if the material properties in the imperfection vary (smoothly and) symmetric­

ally with respect to the Xl - and Xraxes, then g(XhX2)=-g(Xh-XV=-g(-XhXV on D.
Consequently, it can be readily shown from (3.1) and (3.5) that'" obeys the condition (2.6) at
infinity, so that (3.1), (3.5) does provide a formal solution to our problem.

In order to exhibit the localization effects predicted by the preceding solution, we will
examine the spatial variation of two representative field quantities, viz. the equivalent strain f~

and the shear component EI2 of the Lagrangian strain.
From (1.6), (1.7), (2.2) and (2.3) we find

o -_ 2 - 2
f~ -f~+~ =\73Ao+f\73!/1,12 (3.9)

tThe reality or the numbers a and 11 in (3.6) and (3.8) is ensured by the ellipticity of the governina differential equation.
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for the equivalent strain (fr =2IJn AI/V3). Using (3.1), (3.5) and (3.9) we find that

(3.10)

(3.11)

As mentioned previously. our primary interest lies in the examination of the behavior of this
solution as the applied stretch at infinity Ao approaches the critical value Arr at which the
equation loses ellipticity. For this purpose, we need to determine the dependence of a and p on
Au and find from (2.5), (2.9a) and (3.6) that

a -+ A.·ro f3 -+ 0 (3.12)

as Ao-+ Aero Consequently. the logarithmic term in (3.11) becomes unbounded along the straight
lines XI :t Ae,x2 = 0 in this limit but remains bounded everywhere else. These lines are in fact the
characteristics of eqn (2.4) at the instant of loss of ellipticity.

We therefore expect that as Ao is increased and approaches Aero the strains concentrate
("localize") along two directions passing through the imperfection and parallel to (what are to
become) the characteristic directions. Furthermore, calculations performed in specific exam­
ples, suggest that this localization of strain is in fact largely confined to values of Ao which are
very close to Aero with neaJigible strain concentration before that. This is qualitatively in
agreement with experimental observations, e.g. Anand and Spitzig[131, wherein shear bands are
seen to appear more or less abruptly.

The shear strain E12, which according to (1.6), (1.7) and (2.3) obeys

(3.13)

can be shown to exhibit these same features.
For purposes of illustration, we present a number of graphs (Figs. 2-13) showing the spatial

variation of shear strain in the body. The calculations are performed for a power-law material
(I.I5) and a particularly simple form of imperfection. The latter is modelled by taking the
Young's modulus (I.I5d) to be of the form

Here A and B are constants and H is the Heaviside step function. The "yield stress" is
assumed to be constant throughout the body, U y i!! u~. It can be shown that the strain energy
function (I.I2) associated with such a material is

W = WO<l){ 1+£I(X)} + OCr), (3.15)

where Wois the plane strain version of (1.15a) with E = Eo, Ey = EyOand Uy = uyo. This describes
a rectangular imperfection of undeformed cross-sectional dimensions 2A x 2B. The materials
outside and inside the imperfection are both homogeneous and of the power-law type (1.14)
with the Young's modulus being Eo and EO<I +E) respectively.

From (3.9), (3.1), (3.5), (2.5), (3.15), (3.14) and (3.12) we find that in the limit Ao-+ Aero the
strains E. and EI2 become unbounded along the (eight) straight lines which pass through the
vertices of the rectangular imperfection and have slopes :t A~~.

A pictorial representation of these results is shown in Fig. 2-4. The results are presented
relative to the undeformed configuration for a material with hardening exponent m = 4,
imperfection amplitude E= - 0.01 and imperfection dimensions AlB = 1.685 (== Au). We note
that the characteristic angle (in this configuration) is lIcr =tan-IAcr '" 593°.
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Figure 2 shows the angular variatioit of the (non-dimensional) shear strain E,21£y along the
circular arc of radius R = t5A centered at the origin. The graph is drawn for various values of
the prescribed deformation-"toad"-l,

Ao-l
l=Acr-r (3.16)

(As the applied stretch Ao varies from t to Aero the load 1varies from 0 to 1.) We observe that
the shear strain is negligibly small when the load is less than about 0.7. As the load level
increases, the strain continues to remain small everywhere except in a certain narrow zone in
the vicinity of 8 = 5!r in which it is no longer insignificant. As the load approaches I, the strain
in this zone concentrates quite dramatically; for example, it almost doubles in value near the
peaks when the load increases from 0.98 to 0.99. The three peaks observed are associated with
the three characteristics which pass through the vertices of the imperfection and propagate into
the first quadrant. (The particular choice of dimensions of the imperfection AlB =Ac, is such
that there are only three such (distinct) lines instead of the four that exist in generaL)

In Fig. 3 we have plotted contours of constant shear strain for E12/£y =-3, -2,0, +0.07,
+ 0.5, + t at a fixed load levell =0.98. In Fig. 4, the constant shear strain contour E12/£y =- 2
is plotted at different load levels 1=0.8, 0.9, 0.94, 0.96, 0.98. Both of these graphs show that the
effect of the imperfection is felt predominantly along the characteristic directions. The second
further indicates that the effect becomes significant only when the applied stretch Ao takes on
values close to Act- Results for various other cases which are plotted later, also bear out these
observations.

CONSTANT SHEAR STRAIN
(E'2/.,) CONTOURS

• HYPER- ELASTIC MATERIAL

• J -0.98

........,""-~---------------X,

Fig. 3.
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Finally, we note that because of the presence of the term /3-1 in (3.11), and since according
to (3.12) /3 -+ 0 as Ao -+ Am the equivalent strain E. (and similarly the shear strain Ed becomes
unbounded everywhere in the body (though less singularly than along the characteristic
directions), This is in conflict with the assumptions made in a regular perturbation analysis and
indicates that such a series solution is not uniformly valid with respect to Ao. Consequently,
despite the good qualitative agreement between the "solution" obtained here and experimental
observations, its quantitative implications are questionable. It is of interest to determine the
range of validity of the results obtained here. With this objective in mind, in the next section we
solve the original nonlinear problem directly by the finite element method and compare those
results with the ones here.

3.2 Hypo-elastic material
In this case, the functions g in (3.1) denoting the r.h.s. of (2.15) involves the unknown

quantities i and i. Therefore, (3.1) does not provide a solution to our problem and one cannot
directly write down expressions for the various field quantities. If we denote the vector (Ii" li2,

SII, 522, 512, ji) by V, the original equations governing the hypo-elastic body are amenable to the
form V+A("\o)[ V) =I where A is a linear operator on V. Although a solution to this
non-autonomous linear equation can be constructed (e.g. see Friedman [22]), it cannot, in
general, be put into a closed form.

Nevertheless, in the special case of a "strain (or stress) induced imperfection" it is possible
to exhibit the localization features of the solution at the instant when the imperfection appears.
Such imperfections are often encountered in practice, as for example the sudden nucleation of
voids in an initially homogeneous body when the strain (or stress) reaches a certain critical
level. Accordingly, the imperfection amplitude ~ = 0 before the appearance of the imperfection
and ~ = constant (;o! 0) thereafter. Consequently, at the instant of appearance, the perturbed
displacements ii and stresses i vanish ~nd the function g depends only on known quantities.
Thus, the Lagrangian shear strain rate EI2 is found from (1.19), (2.12), (2.14) and (3.1) to be

(3.17)

where G.22 - G.II is given by

Gm(X" X2) - G,II(X" X2) =

41T(a 2_ /32~(1J. _ (CT/2» [(~+ a) In(xl
2+a 2x2

2
) - (~+ f3 ) In(x.

2+f3 2xl)] (3.18)

when the polynomial (3.4) has four purely iJ1laginary roots. As mentioned previously when the
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roots are all complex, such as in the case of a power-law material with hardening exponent
m> 2, the localization features are similar to those of a hyper-elastic material. On the other
hand, when 2~ m > I the shear strain rate is described by (3.17), (3.18). In this case, since
IJ.er = O'e,/2,[18], it can be shown from (3.8) that as Ao"" Aer

I (IJ. +0' '/2) 1/2-+ rt r

a Vi 2IJ.~r - IJ."r '
(3.19)

where the subscript cr denotes evaluation at Ao=Aero
Therefore, as Ao"" Aer the second logarithmic term in (3.18) becomes unbounded everywhere

in the (x .. x2)-plane except along the XI-axis. This suggests that when It loss of ellipticity is
approached, the strain field near the XI-axis is significantly different from that elsewhere. (The
characteristic direction at the instant the material becomes parabolic is, of course, the
XI-direction.)

Reconsidering the particular rectangular imperfection (3.14), it can be shown that in the limit
Ao -. Ae" the shear strain rate E12 becomes unbounded along the two straight lines X2 = ± AIiIB
which are parallel to the XI-axis and pass through the vertices of the imperfection, whereas it
remains bounded everywhere else. .

A numerical example is presented in Figs. 5 and 6 for a material with hardening exponent
m =I, imperfection amplitude E=-0.01 and imperfection dimensions AlB =1.0. Figure 5
shows the variation of the (non-dimensional) shear strain rate AoEI2/Ey along the line XI =IIA.
The graph is drawn for various values of the prescribed load I. We note that the shear strain
rate is negligible at small values of the load but increases dramatically in a (confined) zone near
the XI-axis as the load level approaches unity. .

Figure 6 shows the contours of equal strain rate El2AoiEy =- I drawn at different load levels
I =0.80, 0.93, 0.97, 0.99. Here also, we observe that the influence of the imperfection is felt
predominantly along the characteristic directions, the XI-axis in this case, and that strain rate
concentration becomes significant only when Ao is close to Aero

4. FINITE ELEMENT SOLUTION
Here we obtain a numerical solution to the nonlinear problem posed in Section 1 by means

of the finite element method. A full Lagrangian formulation of the problem is adopted, with the
stress-free configuration used a:. the reference one and convected cartesian coordinates are
employed. Material incompressibility is approximately accounted for by the introduction of a
slight degree of compressibility in the material (see Needleman[23] for a more detailed
discussion).

In order to simulate the boundary conditions at infinity, displacements corresponding to a

20.0
• HYPO- ELASTIC MATERIAL

16.0

12.0

~..
x

8.0

-0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6

AoE 1.1.,
Fig. S.
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uniform state of strain ()q ='\0, '\2 ='\ii ') are prescribed along the boundaries of the rectangle
A1A2A)A4 (see Fig. 7). In view of the symmetry of the deformation, only the upper right
rectangle OB,A.B2 is analyzed.

The type of grid and elements used for the two constitutive models are identical. The finite
element grid consists of quadrilaterals, each made up of four trianaular sub-elements (formed
by the two diagonals of the quadrilateral) with linear displacement fields. For each quadrilateral,
static condensation is used to eliminate the nodal degrees of freedom corresponding to the
center node. The choice of this particular elementt was motivated by the desire to have the
least possible coupling between nodes (and therefore more degrees of freedom), because of the
anticipated localized form of the deformation pattern.

The rectangle OB tA.B2 is divided into a uniform grid consisting of N elements in the
Xi-direction and M elements in the Xrdirection. The dimensions of OB.A,B2 are chosen so
that the diagonal OA. is parallel to the characteristics of the material at the instant of loss of
ellipticity, OB2/OB, = tan 6rr (except in the case of a hypo-elastic material with hardening
exponent m :s; 2, in which case we take OB t =OB~. As observed by Tvergaard et al. [8], this
particular mesh design leads to a very good agreement between the numerically computed
directions of localization and the corresponding theoretical values.

The only difference in the finite element treatment of the two constitutive models is that in
the case of a hyper-elastic material an incremental Newton-Raphson procedure is used to solve
the discretized equations, while for the hypo-elastic material we adopt a straightforward
incremental method.

X,

X,
A

81

,

I
8
I

O-A~ 8,

IMPERFECTION

~

Fig. 7.

t Hiaher order elements tried (6 node strain triangles) for the same number of degrees of freedom gave less accurate results
and were excessively time consuming.
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4.1 Hyper-elastic material
The elastic constitutive relation employed here is similar to the one used by Hutchinson and

Tvergaard[21] and Tvergaard et a/.[8] and characterizes a material with a slight degree of
compressibility. For volume preserving deformations, the limit v ~O.5 (v =Poisson's ratio) of
this strain energy density function yields the incompressible description (USa) employed
previously. The specific form of the strain energy density function was determined by requiring
that the principal Kirchoff stresses at a given state of deformation should be identical to those
in the compressible Storen-Rice material (as specified subsequently) when the latter is
deformed in a path independent way under the action of the same principal stretches (see [8]
and [26]).

In the finite element approximation, we seek a displacement field II in the form II =
11ft(X)+....+1Jft(X) which minimizes the total strain energy of the body. Here 1, are the
nodal degrees of freedom of the displacement field and the shape function /;(X) are continuous
and vanish at the boundary of the body. Accordingly, the nonlinear algebraic equations of the
discretized problem to be solved in order to determine "Ii are

(4.1)

A Newton-Raphson scheme is used to iteratively solve these equations. A more detailed
discussion may be found in [26].

4.2 Hypo-elastic material
For the case of a Storen-Rice material the path dependence of the solution must be taken

into account. This is done by a straightforward linear incremental method based on the
principle of virtual work

(4.2)

It is understood that the admissible velocity fields in (4.2) will have to satisfy the zero velocity
boundary condition.

The incremental moduli corresponding to the slightly compressible version of the Storen and
Rice material are given in[26]. Here we note that for deformation histories in which the
principal axes of strain remain fixed with respect to the material, the model is path independent
and a strain energy function coinciding with the one in Section 4.1 exists. The linear
incremental procedure used, is in fact a special case of the iterative method described
previously for the hyper-elastic material. In order to ensure the accuracy of the solution, small
increments must be taken. At each increment, the values of the second Piola-Kirchoff stress
components at every sub-element as well as the nodal displacements need to be stored in order
to start the next step.

The increment size for the calculations were chosen as follows: The program was first run
with only one element and with the desired values of the various parameters using various step
sizes. The largest increment size which computed the stresses to within an error of 0.1% was
then chosen for all further calculations.

S. NUMERICAL RESULTS
In this section we compare the results of the finite element calculations with the analytical

predictions of the linearized model. All the results reported here are obtained using a yield
strain E,o = 0.001 (which is of an order typical for most structural metals). For this value of the
yield strain, numerical experimentation indicates that the results, for hardening exponents
m > 1, are almost insensitive to the Poisson ratio II in the range 0.3-0.495, and in all subsequent
calculations we take II =0.49.

For a load range 1=0.0-0.995 and for distances from the imperfection RIA C!: 5.0, three
different values of the imperfection amplitude parameter €were considered (€ =-0.04, -0.01

SS Vol. 17. No. IZ-B
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and - 0.0025). In all cases it was found that the shear strain EI2 depended almost linearly on ~

and consequently, only the results for the case ~ = - 0.01 will be presented here.
We also mention that throughout the finite element computations, the sides of the rectangle

OB IA.B2 (see Fig. 7) are taken to be OBi = 20A and OB2 =20B where 2A and 2B are the
undeformed imperfection dimensions (in the XI- and X2-direction respectively).

All results are presented with reference to the unloaded configuration, with (R,9) being
polar coordinates centered at the origin. Note that in this configuration, the inclination of the
characteristics to the XI-axis at the instant of loss of ellipticity are ± 9~. where

(5.1)

with 8'0' given by (2.10) for the hyper-elastic material and (2.19) for the hypo-elastic one.

5.1 Hyper-elastic material
Figure 8(a) shows the angular variation of the nondimensional shear strain EdEy along a

circular arc of radius R = 15 A centered at the origin. The graphs are drawn for various values
of the applied load. 1= 0.7,0.9,0.94 and 0.98, where the load I is related to the applied stretch
AD by (3.16). The results displayed are for a material with hardening exponent m = 4 for which
we have from (2.10), (2.11) and (5.1) that Arr == 1.685, 8rr == 59.3°. The solid line represents the
theoretical predictions based on the perturbation analysis while the dashed line represents the
numerical results for a 20 x 20 finite element grid. Figure 8(b) compares the same theoretical
results with finite element calculations using a 40 x 40 grid.
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We observe that for loads I as high as I:::: 0.9, the finite element results for both meshes are
in good agreement with the theoretical predictions, presumably since very little localization
occurs at this load level. At higher loads, I = 0.94, 0.98, the finite element results in Fig. 8(a)
follow the trend of the theoretical curves but become increasingly inaccurate around the strain
peaks. The 40 x 40 mesh in Fig. 8(b) shows considerably better agreement, even at loads as high
as 1=0.98.

One does not, of course, expect the theoretical results to be uniformly accurate at all points
in the body. In Fig. 9 we have plotted, for the same material, the angular variation of EdEy

along a circular arc of radius R = 5A, in the case of a 40 x 40 element mesh. On comparison
with Fig. 8(b), we observe that the error in this case, particularly near the peaks, is greater than
that on the arc R = lSA at the same load. This is especially visible near the right upward peak at
a load 1=0.98. This suggests, as one might have expected, that the theoretical results become
increasingly accurate (at least relative to the finite element results) as one moves away from the
imperfection.

In order to examine the variation of strain with distance from the imperfection, in Fig. 10 we
plot the (theoretical) angular variation of EI2/E., along a number of circular arcs at the same load
1=0.997. We see that on the arc R = SA a fairly wide zone is affected by the imperfection
(roughly 30° <a<85°) and that the downward peak suddenly narrows and becomes exceed­
ingly sharp in the vicinity of a = S~ ("" acr). As we move away from the imperfection, say at
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R = 20A, the zone which is disturbed by the imperfection becomes noticably narrower (roughly
50° < e < 70°) and the downward peak is somewhat more rounded. As anticipated, the mag­
nitude of the shear strain decreases as the distance from the imperfection increases. Note that
in all cases the maximum shear strain occurs almost exactly at the theoretically predicted angle.

Finally, in order to study the effect of the hardening exponent m on the solution, we plot the
angular variation of shear strain EI2/Ey for different values of m at a distance R = 15A from the
center of the imperfection. Figure II shows these curves for m = 2, 4 and 10 at a load level
I =0.98. The peaks are seen to occur very close to the theoreticallyt predicted angle and the
associated value of shear strain decreases considerably (from Err = II E). for m = 2 to
E~' =0.8Ey for m =10) with increasing values of the hardening exponent. Numerical cal­
culations performed in the cases m =2, 10 with a 40 x 40 grid showed an agreement similar to
that found in the case m = 4.

5.2 Hypo-elastic Material
In Fig. 12, we have plotted the theoretical shear strain rate A.OEI2/Ey vs e along a circular arc

of radius R = 15A, using (3.17) and (3.5). The figure drawn corresponds to a material with
hardening exponent m =4. It is observed that for loads less than about I =0.8, the shear strain
rate is negligible. Thereafter, it begins to increase sharply within a narrow zone on either side of
e "" 51°. On comparison with the corresponding figure for the hyper-elastic material (Fig. 2), we
notice a striking similarity, which in view of the remarks made in Section 3.2 is hardly
surprising. Of course, the specific values of the angles of localization are different; in this case
we find from (2.19), (2.20) and (5.1) that A.cr == 1.542 and 8 cr == 50.9°.
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tFrom (2.10). (2.11) and (5.1) we find that At' == 2.163. err "" 65.2° for m == 2 and ACT == 1.379. eCT "" 54.1° for m == 10



The emergence or ,hear b.and, in [I1.ane ,Irain 1133

Recall from the discussion in Section 3.2 that the analytical results hold only at the instant
of appearance of a strain induced imperfection. Therefore, the curve corresponding to a load
level I in Fig. 12 shows the angular variation of the shear strain rate when the imperfection
appeared at that particular load, in a material which was previously homogeneous.

Since the effect of an imperfection is not important until the load approaches its critical
value, one expects that the particular load at which the imperfection was induced (provided that
it is not close to the critical one) does not significantly affect the strain pattern at the later stages
of deformation. In order to examine this hypothesis, we performed the following finite element
calculations using a 20 x 20 grid. For a hypo-elastic material with m = 4 we activated the
rectangular imperfection (3.14) at two different load levels 1=0.7 and 0.8 and computed the
shear strains at subsequent loads. The agreement between the two cases were reasonably good,
and the results are described in some detail in [26]. It should be remarked that the magnitudes of
the shear strains were considerably less for the hypo-elastic material than for the hyper-elastic
one (at the same load level), whereas the width of the band was roughly the same. Since in the
path dependent material it is the strain rates that localize, the strains, which are their integrals
over the deformation history, are necessarily less than those in the hyper-elastic case. On the
other hand, the width of the band is set by the dimensions of the imperfection, independently of
the particular constitutive law.

Finally we mention that for both constitutive models, the equivalent strain difference E, - E,o
also showed localization effects very similar to that of the shear strain E12•

6. DISCUSSION
Although the linearized model discussed in this paper is perhaps too simple to give

quantitatively good results, it nevertheless predicts some of the important qualitative features
relating to shear localization that are observed experimentally. It shows that up to rather high
levels of strain, the effect of an imperfection is negligibly small, with its influence being
essentially confined to a small region around it. As a certain critical value of strain is
approached, the imperfection more or less suddenly becomes "activated" and causes a
dramatic concentration of strain along narrow bands emanating from the imperfection. The
width of these zones is essentially set by the dimensions of the imperfection and the bands
rapidly propagate through the body as the load increases. The strain field elsewhere, continues
to be relatively unaffected by the imperfection.

The critical strains involved here are those associated with a loss of e1Iipticity, while the
directions of the shear bands are the associated characteristic directions. In this example, the
imperfection-free body loses e1Iipticity when the applied stretch Ao = At,. Presumably, the
imperfect body loses e1Iipticity,locally near the imperfection, when Ao = A~, where A~, is a number
close to Arr(A~, < A,,). It seems likely that the activation of the imperfection and the beginning of
localization occurs when Ao =A~,; as Ao is increased further, the localized zone propagates until a
fully developed band forms when Ao = A,,.

The particular choice of constitutive equation and material parameters dictates the strain
level at localization and also the orientation of the shear bands. However, both models studied
here show the same essential features discussed above, suggesting that similar behavior may be
exhibited by other constitutive models also, provided the associated incremental equilibrium
equations lost ellipticity. Similarly, though our results do not describe the more interesting
types of imperfections such as voids and rigid inclusions, one expects that an appropriate
analysis in these cases would also show the same qualitative behavior.

It should be mentioned that there is a certain formal similarity between the analysis here and
the classical bifurcation analysis of elastic (or elastic-plastic) solids Budiansky[241,
Hutchinson[25]), for example, the regular perturbation expansion with respect to the imper­
fection amplitude and its non-validity near the critical load. We emphasize however, that the
localization behavior observed here is due to a loss of ellipticity of the governing equations
while the features of the behavior near the buckling load are associated with a loss of
uniqueness which usually occurs within the elliptic regime.

Based on the above observations, the following mechanism for the emergence of shear
bands seems plausible: near points of imperfection in the material, and after the remotely
applied loading reaches a certain level, the strains start rapidly concentrating along two
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preferential directions. It is then possible, that the high strain concentration causes some
mechanical damage at points along these directions (e.g. grain boundary separation, dislocation
accumulation), which in tum act as new sources of imperfections, thus driving the phenomenon
even further.
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